university of
groningen

UNIVERSIDADE
DE SANTIAGO
DE COMPOSTELA

Bachelor of Physics

Undergraduate dissertation

Deep learning for particle tracking

[gnacio Fernandez Grana

supevised by
dr. Xabier Cid Vidal
dr. Johan G. Messchendorp

Departamento de Fisica de Particulas da USC

&
KVI- Center for Advanced Radiation Technology at RUG

July 2020

To my family
and to those of you who made Groningen worth remembering.

Abstract

The main goal of this research project is to study the applications of a convolutional neural network
(CNN) for identifying particle tracks in collider experiments, using inner tracking detectors such as
those in the future PANDA experiment (pp) and the running BESIII experiment (ete™). This work
is a follow-up of the master thesis by Harmjan de Vries who demonstrated the feasibility of the CNN
methodology with tracking data generated by Monte Carlo simulations of ete™ collisions in the BESIII
experiment. We tested the CNN designed in that thesis on events with more noise and more particle
tracks, simulating high interaction rate conditions. The results show that the CNN is able to reduce
background noise with high accuracy but does not efficiently filter particle tracks unrelated to the
original event. Therefore, the applications of this CNN are restricted to events with low interaction
rates without pile-up of other events.

Resumo

O obxectivo principal deste proxecto é estudar as aplicaciéns dunha rede neuronal convolucional
(CNN) para a identificacion de trazas de particulas en experimentos colisionadores, usando detectores
internos como os dos experimentos PANDA (pp) e BESIII (ete™). Este traballo ¢ unha continuacion
da tesis de master de Harmjan de Vries, onde se demostrou a viabilidade da metodoloxia CNN usando
datos xerados en simulacions Monte Carlo de colisiéns eTe™ no experimento BESIII. No6s estudamos
a CNN desenada nesa tesis en eventos con mais ruido e mais particulas, simulando condiciéns de
altas tasas de interaccion. Os resultados amosan que a CNN é capaz de reducir o ruido cunha alta
exactitude, pero non filtra eficientemente trazas de particulas non relacionadas co evento orixinal. Polo
tanto, as aplicacions desta CNN quedarian restrinxidas a eventos con tasas de interacciéon baixas e sen
solapamento doutros eventos.

Resumen

El objetivo principal de este proyecto es estudiar las aplicaciones de una red neuronal convolucional
(CNN) para la identificacion de trazas de particulas en experimentos colisionadores, usando detectores
internos como los de los experimentos PANDA (pp) y BESIII (ete™). Este trabajo es una continuacién
de la tesis de master de Harmjan de Vries, donde se demostré la viabilidad de la metodologia CNN
usando datos generados en simulaciones Monte Carlo de colisiones ete™ en el experimento BESIII.
Nosotros estudiamos la CNN disenada en esa tesis en eventos con mas ruido y méas particulas, simulando
condiciones de altas tasas de interaccion. Los resultados muestran que la CNN es capaz de reducir el
ruido con una alta exactitud, pero no filtra eficientemente trazas de particulas no relacionadas con el
evento original. Por tanto, las aplicaciones de esta CNN quedarian restringidas a eventos con tasas de
interaccion bajas y sin solapamiento de otros eventos.

Contents

1 Introduction

2 Tracking detectors

2.1

The BESIII detector

3 Deep learning and artificial neural networks

3.1
3.2

3.3
3.4
3.5

3.6
3.7

3.8

Overview

Forward propagation

The learning process: backpropagation

The ADAM optimizer

Convolutional neural networks
3.5.1

Convolutional layers

3.5.2 Pooling layers

3.5.3 Batch normalization

Residual networks

Overfitting and underfitting

Programming frameworks

4 Network design

4.1
4.2

4.3
44
4.5

Input processing and labeling

Output processing

Loss functions

Performance metrics

U-net architecture

5 Testing the model

5.1
5.2
5.3

Testing on different background noise levels

Adding random tracks

Testing on incomplete events

6 Conclusions

© © 0o I O ot W«

11

11
12
12

13

13
13
14

15
15
16

17
18
21
23

24

1 Introduction

The upcoming PANDA experiment, acronym which stands for antiProton ANnihilation at DArmstadt,
will be on of the main experiments at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt,
Germany. It will investigate a wide range of fundamental questions in hadron and nuclear physics by
studying collisions of antiprotons and fixed nucleons or nuclei in a momentum range of 1.5-15 GeV/c.
Some of the fundamental topics which will be studied in PANDA are gluonic excitations, nucleon structure
and the physics of exotic hadrons, among others [2].

Modern experiments in particle physics like PANDA commonly generate large amounts of data
due to the high number of particle interactions, making the data storage and analysis a rather challenging
computational task. The traditional approach when analyzing this data assumes that the events of interest
can be efficiently selected in real time, and once selected, they can be affordably distributed and stored
for further off-line analysis. Nevertheless, in modern experiments these assumptions break down as the
amount of data produced is rapidly increasing. In particular, in PANDA the interaction rates will be as
high as 2-107 interactions per second with typical event sizes of 4-20 kB, leading to data rates around 200
GB/s [3]. The imposed storage capacity limitations (= 3 PB/year) do not allow to store all the generated
data, meaning that the data rates need to somehow be reduced by three orders of magnitudes to match
these capacity limitations. To do so, a real time event selection algorithm which reconstructs the particle
tracks and discriminates the events of interest is needed. A potential candidate for an algorithm of such
characteristics is a machine learning algorithm; specifically in this project we will study an artificial neural
network.

Machine learning comprises any algorithm that is able to improve through experience and to
learn from data. In recent years, it has proven to be an extremely useful tool in many fields, in particular
to analyze and extract features from large amount of data [4]. These algorithms are widely used in big
companies such as Google, Amazon or Facebook, as well as in many fields of science. Deep learning is a
subfield of machine learning whose central topic are a kind of algorithms loosely based on the biological
functioning of the human brain: artificial neural networks, simply referred as neural networks (NN). NNs
have been shown to perform very well in a wide variety of tasks like object detection and classification,
speech recognition and even natural language processing tasks such as sentiment analysis or language
translation [15|. Particularly, in areas related with image analysis a special class of deep learning algo-
rithms called Convolutional Neural Networks (CNN) has been applied with outstanding results [17, 10].
Since particle tracking detectors are usually imaging detectors, CNN algorithms are very well suited for
analysing the data produced in such detectors. The architecture of the CNN studied in this project is
based on the U-Net network, a very popular CNN within the medical imaging community [10, 18].

In this project we will study a CNN as a potential candidate for the analysis of data from tracking
detectors such as PANDA, as a follow-up of the master thesis written by Harmjan de Vries: Convolutional
Neural Network for Reducing Noise and Detecting Tracks in the BES-II1 Main Drift Chamber [1]. In this
thesis an U-Net based CNN was designed and it was trained as two different algorithms, a noise reduction
algorithm to reduce background noise and a track recognition algorithm to identify the different particle
tracks in the events. The data used to train and test the CNN were taken from Monte Carlo simulations
in the Beijing Spectrometer III (BESIII), which studies eTe™ collisions in an energy range of 2-4.7 GeV.
Currently running experiments such as BESIII work at lower interaction rates than future experiments
like PANDA, where the high interaction rates will cause overlap between different events. Therefore,
BESIII generates much cleaner events with less background noise and less particles. In [1], both the noise
reduction and the track recognition algorithms were shown to work very efficiently in these clean data.
The main goal of this project is to test the limits of the applications of the CNN in data with more noise
and more particle tracks, where high interaction rate conditions are simulated. Given that most running
and future experiments use similar tracking detectors such as the ones in BESIII and PANDA, the results

Micro Vertex Detector GEM Detectors

Shashlyk Calorimeter

Central Tracker Mini Drift Chambers

Muon Range System

\ Targetsystem

Solenoid

Barrel TOF A

™ TOF Wall

Muon Detection

EM Calorimeter

Barrel DIRC

(a) Straw Tube Tracker in PANDA (b) Main Drift Chamber in BESIII

Figure 2: Main tracking detectors in both the PANDA (Straw Tube Tracker) and the BESIII experiments (Main
Drift Chamber). Image (a) taken from [6] and image (b) taken from [7].

obtained in this project can be generalized to many other experiments.

2 Tracking detectors

Both the PANDA and the BESIII experiments use similar tracking detectors to detect charged particles.
The trajectory of a particle is measured by wires surrounding the interaction point. When a particle
hits one of the wires, the position and time of the hit are stored, allowing to reconstruct the particle
track. Unfortunately, noise coming from many sources is also detected in the wires. To measure the
momentum of the charged particles, a magnetic field is applied through the detector. The curvature of
the trajectory of a charged particle through the magnetic field depends on the momentum of the particle.
Thus, the momentum of the particle can be measured if the particle track can be properly identified and
reconstructed. In the case of PANDA, the main tracking detector for charged particles will be the Straw
Tube Tracker (STT) [6, 2|. It will contain 4636 aluminised tubes, called straws, disposed in 27 layers
around the beam-target interaction point, and placed in a powerful 2 T magnetic field (see figures 1 and
2).

2.1 The BESIII detector

Artificial neural networks need labeled data to be trained and tested. For this purpose we will use data
generated in Monte Carlo simulations from the Beijing Spectometer 11T (BESIII) experiment, which has

400 600 800
X(mm)

Figure 3: Example of an event from the Main Drift Chamber in BESIIT where the arrangement of the wire is
shown. The blue line is a true particle track from cosmic rays going through the detector and the red dots are the
measured hits in the wires. For the tilted wires, the measured hits do not correspond to the true particle position.
Image taken from [8].

an inner detector similar to that of PANDA. This experiment studies e*e™ collisions in a energy range of
2-4.7 GeV. The interaction rates in BESIII are lower than in PANDA, which translates in cleaner events
with less background noise and less tracks. The noise data we will use is taken from real data that were
triggered on random timing signatures, not related to the eTe™ interaction point. With the available
Monte Carlo data and noise data we can simulate high event rate conditions using mixing of events.

The BESIII innermost tracker is the Main Drift Chamber (MCD), containing 6796 signal wires
arranged in 43 cylindrical layers coaxial to the beam pipe [7]. These layers can be axial layers, containing
wires parallel to the beam direction, or stereo layers, containing tilted wires with a small angle with
respect to axial direction. The wires are arranged, in an outer radial direction, in 8 stereo layers, 12 axial
layers, 16 stereo layers and 7 axial layers. In this case, a superconducting solenoid magnet will provide
an axial 1 T magnetic field throughout the tracking volume to curve the path of the particles. The main
layout of the MDC in BESIII is very similar to that of the STT in PANDA. The measured hits in the
wires can be stored in a 2D image representing the transverse section of the beam pipe, as seen in figure

3.

The data used in this project corresponds to the decay channel ete™ — ¥(2S5) — J/¥ ntn~ —
e~etnta~. The ¥(2S) and J/¥ are both excited states of the charmonium system cc, a system composed
of a charm quark and a charm antiquark and bounded by the strong interaction. Charmonium is a
powerful tool for the understanding of the strong interaction. Thanks to the high mass of the charm quark
(M. ~ 1.5GeV/c?), the dynamics of the bounded system c¢ can be approximated in a non-relativistic
approach. Some states in the charmonium spectrum are still not well measured and are a central topic
in the physics program of PANDA and BESIII, where further studies about the charm spectrum will be
conducted.

3 Deep learning and artificial neural networks

3.1 Overview

Machine learning and in particular deep learning has changed the paradigms of computation in recent
years. This revolution has been driven by two main reasons:

e First, the very large amount of data generated by society nowadays has created a need for tools to
analyze this data, where machine learning algorithms have proven to be tremendously powerful [12].

e Second, the rapid increase in both computing power and memory capacity in the past few decades
allowed the design of state of the art machine learning algorithms that can process and analyze very
large amounts of data.

Machine learning and all its different sub-classes of algorithms are now a widely used tool in
both industry and science. One of these sub-classes is deep learning, whose central topic are artificial
neural networks, simply referred as neural networks (NNs). The functioning of a NN is loosely based in
the human brain, as it consists of many connected units called neurons which are connected in a similar
way to that of the neurons in a human brain. Each neuron can be seen as a processor which receives an
input and computes, through some internal parameters, an output. A neural network is able to learn from
the data the correct values of these internal parameters to execute a given task. Neurons are disposed
in layers; the basic structure of a NN is composed of an input layer, one or more hidden layers and an
output layer (see figure 4). 'Deep’ neural networks have, by definition, more than one hidden layers,
in contrast with ’shallow’ neural networks that only have one or none hidden layers. In deep-learning
networks, each layer of neurons trains on a distinct set of features based on the previous layer’s output.
The further you advance into the neural net, the more complex the features your layers can recognize,
since they aggregate and recombine features from the previous layer. This allows the network to learn
highly non-linear functions that otherwise would be impossible.

Artificial neural networks are a type of what is called supervised learning algorithms, where
"labeled’ samples are presented to the network. These labeled samples contain the ground truth, i.e.,
what we want the network to predict, allowing the network to compare its predictions with that ground
truth in order to learn. In this learning process, information needs to flow in two opposite directions.
In forward propagation, the network is fed with the raw data through the input layer, going through
all the hidden layers and ending up in the output layer, where the prediction is made. In addition, the
information also goes backwards, from the output layers to the input layer, allowing the network to learn
from its previous predictions. This process is called backpropagation.

InputLayer Hidden Layers OutputLayer

Figure 4: The scheme of a neural network. Deep neural networks have many hidden layers in between the input
and the output layers, in contrast with shallow neural networks.

3.2 Forward propagation

During forward propagation the input data flows from the input layer all the way to the output layer
going through every neuron in every layer. Neurons receive an input and compute an output through two
operations: a linear function called net function and a non-linear function called activation function. The
net function is a weighted average of all the inputs x;, given by the equation:

z:Zwi‘xi—i-b. (1)
i=1

Here z is the net function, w; are the weights, b is the bias and ¢ indexes all the input values. In a fully
connected layer, ¢ would index all the neurons in the previous layers. The parameters w; and b are the

learnable parameters of the neuron. The network, through the learning process, optimizes these values to
make better predictions.

At a first glance, the activation function can look unnecessary. Nevertheless, without an activa-
tion function, our neural network would just be a linear combination of input values, resulting in a linear
function itself. There are several activation functions commonly used, but in this work we will restrict
ourselves to two of them:

e Rectified linear function (ReLU):
ReLU(z) = max(0, z). (2)

ReLU activation functions in the hidden layers have shown to yield better performance than hyper-
bolic or sigmoid activation functions in supervised training of very deep neural networks, in spite
of the hard non-linearity and non-differentiability at zero [13]. In the NN studied in this project all
the layers except from the output layer use ReLU as the activation function.

e Sigmoid function:

1
o) = . 3)
The sigmoid function is useful when we need the output of a neuron to be a value in between 0 and
1. For every point in the input image, our network will predict an output value which corresponds
to the probability of that point of being a track point, so all the output values should be between
0 and 1. For that reason we will use a sigmoid activation function in the output layer.

The neurons in each layer will output a value after passing the operations mentioned before. The
output of a layer will be the input of the next one, until the output layer is reached. In the output layer,
the network will output a final prediction and it will calculate a function called loss function to measure
how far from the ground truth (the label) the prediction is. The goal of the neural network is to minimize
the difference between the prediction and the label of each input sample. To measure how well is the
network doing in the whole training set, we need to take in account the loss function computed with all
the samples of the training set. We do that with the so-called cost function. During backpropagation the
network will try to minimize this cost function to learn how to make better predictions. The cost function
is usually an average of the loss function taken over a specific number of samples m from the training set:

Twb) = = 3L), (4)

where ¢ is the label or ground truth, y* is the network’s prediction and L(#*,y*) is the cost function for
the input sample 1.

3.3 The learning process: backpropagation

The network minimizes the cost function through the optimization function or optimizer. The goal of
optimizer is to find the set of internal parameters in the network which minimizes the cost function. There
are many optimization functions one can use in a neural network, but most of them are based on the
gradient descent method [15]. Gradient descent is a way to minimize an objective function, in this case the
cost function J(w,b) by updating the parameters in the direction of the gradient of the objective function
VJ(w,b). The learning rate, 7, determines the size of the steps we take to reach a the minimum. In other

2
117y Ty

oot llpy 1T
L8585 sttty
s =S
e

\\‘0"‘?"11
'i’.’

? %
i
..m/,g;‘,'?“,

{
il
¥

Figure 5: Abstract representation of a multivariable function where the path the optimizer follows to get to the
global minimum is painted in black. The cost function is a highly dimensional function that depends on all the
internal parameters of the network. The CNN studied in this project has around 5 millions parameters.

words, we follow the direction of the slope of the surface created by the objective function downhill until
we reach a valley, as shown in figure 5.

Depending on the number m of training samples we take in account in the cost function (equation
4) before updating the internal parameters of the network, we can have three different training protocols:

e In batch training, also know as vanilla gradient descent, the whole training set is used to compute
the gradients, so the parameters are updated only once every time the network goes trough the
whole training set. This pass through all the data from the training set once is called an epoch.

e In mini-batch training the training set is divided in batches, with the parameters being updated
after each batch is presented to the network. This is useful, for instance, when the whole training
set does not fit in memory. In addition, this protocol usually converges more rapidly.

e An extreme case of mini batch training would be stochastic training, where the parameters are
updated after each sample in the training data set, i.e., batches have size 1.

Batch gradient descent can be slow as it needs to calculate the gradients of the whole training
set in order to perform one update. On the other hand, when using stochastic training it can be difficult
to find the exact minimum of the cost function as the network might keep iterating without reaching the
minimum. To avoid these problems a mini-batch size of 50 was used in this project, as it was the chosen
size in the master project [1].

3.4 The ADAM optimizer

As we mentioned earlier, most optimizers are based on the gradient descent method, which allows to
find the global minimum in a multivariable function, in this case the cost function J(w,b). The ADAM
optimizer (ADAptive Momentum), first proposed in [24], is an upgrade of the classical gradient descent
optimizer and it is the chosen optimizer for our network, as it has been shown to be an overall good choice
as an optimizer in a wide range of cases [15, 16].

The classical gradient descent optimizer uses a fixed learning rate which does not change during
training. Instead, ADAM is an adaptative learning rate method, which means it computes individual
learning rates for different parameters; this allows to drive the convergence of the algorithm more efficiently
towards the minimum. It does so by taking in account two different momenta, m and v.

The specific operations used to update the internal parameters of the network, w and b, are:

- bias
Aw--:—i, Ab":—$, 5
W= A (5)

v

where m;; and v;; are the first and second momentum, respectively, 1 is the learning rate and ¢ is an
added parameter for numerical stability. The momentum terms for the weights w;; and for the bias term
bi; are computed as:

B+ (1 - 51)3?,;;. ' ~ Baviy + (1 - 52)(3(2,;)2‘
e B S £ R
_ (bias _(bias
iy PG A =BORL L B+ (1= Ba) (P

where m;; and v;; are the respective momenta calculated in the previous step, and ¢ is the number of
steps taken so far. For the parameters 81 and (82 in equation 6 as well as € in equation 5, we have taken
the default values from the original paper: 31 = 0.9, B2 = 0.999 and ¢ = 1078 [24]. The learning rate
used is 7 = 0.001, chosen based on the study done in [1] where it was shown to yield the fastest learning

With the momentum terms, the ADAM optimizer takes into account not only the gradient of the
cost function for the current step, but also for all the previous steps. The first and the second momentum
terms, m and v, are respectively exponentially moving averages of the first derivative and second derivative
of the cost function with respect of the corresponding internal parameter: aaT{j and (887‘;)2 in the case
of the weights w;; and % and (%)2 in the case of the bias term. An exponentially moving average
is a weighted average where the Weig];hts of the values calculated in past steps decrease exponentially as
we go further in the past. Multiplying the learning rate by the first momentum in equation 5 increases
the size of the steps taken in a direction that coincides with the average direction of the previous steps.
This happens because the first momentum increases when the previous steps have been taken in similar
directions, much like the classical momentum of a particle [16]. In the same way, dividing the learning
rate by the square root of the second momentum decreases the step size when the gradients are varying
too much, i.e., the square of the gradient is big. In this case, the oscillations do not cancel out because
the squares are always positive, so this term gets larger whenever the previous steps have oscillated a lot.

3.5 Convolutional neural networks

In general, the standard architecture of neural networks is the one presented in figure 4. It consists of
an input layer, an output layer and a given amount of fully connected hidden layers in between, meaning
that every neuron in a given layer receives input from every neuron in the previous layer. For tasks
related with computer vision, like pattern recognition or image analysis, there is a special type of neural
network that is known to outperform the standard NN architecture [12]: convolutional neural networks
(CNN). The origin of the popularity of this kind of architecture was the design of the CNN "AlexNet’ for
the ImageNet competition in 2012 [25], which exhibited an unprecedented low error in object recognition.
The architecture of a CNN is more diverse as they can be made up from three types of layers: convolutional,
fully connected and pooling layers. A convolutional network which does not use any fully connected layers
is called a fully convolutional network.

3.5.1 Convolutional layers

The core building block of a convolutional neural network is the convolutional layer, which uses a special
type of linear operation between arrays called convolution. The layer’s learnable parameters are encoded
in the filters (or kernels), 2-dimensional arrays (could be arrays of higher dimensions but in this project
we will only use 2-dimensional filters). Each filter can be seen as matrix containing ny x ny weights and
a bias term that act on input matrices (images) with size njnput X Ninput. During forward propagation,

each filter is ’convolved’ accross the input matrices, meaning that the dot product between the filter and
each my x ny sub-matrix of the input images is computed and the bias term is added. The output, also
called the feature map, is an image where each element is the result of each dot product (see figure 6).
The dot product here is defined as multiplying element-wise the two matrices and summing all the values
of the resulting matrix, so the result is a scalar.

2 4 9 1 4
2 1 4 4 6 1.2 3 51
1 1 2 9 2 X 4 7 4 =
7 3 5 1 3 2 5 1
2 3 4 8 5 Filter / Feature
Kernel
Image

Figure 6: The convolution operation for the first 3x3 sub-matrix in the input image, without considering the bias
term. The same operation should be repeated for all the 3x3 sub-matrices in the input image.

A convolutional layer can have one or more filters. If there is more than one, each filter is applied
independently to the input image, so the output is a volume constructed by stacking up all the individual
features maps (see figure 7). The depth (also referred as the number of channels n.) of the output volume
will be equal to the number of filters in the layer. There can also be the case where the input image
has more than one channel (for instance, photographies usually have 3 channels, one for each basic color:
red, blue and green). In this case, filters must have the same number of channels than the input image,
and the convolution is also taken across the third dimension (see figure 7). Let’s assume the input of a
convolutional layer is an array with dimensions nipput X Ninput X ne. If we apply to this image m filters
with size ny x ny, then the output feature map will have a size noutput X Nouput X M Where ngyeput is given
by Nouput = Ninput — ny +1. We assume that the input images are squared, which will always be the case
in this project.

Padding and stride

The size of an image shrinks when passing through a convolutional layer. To avoid this, a parameter
p called padding can be additionally considered. When padding is applied, the size of the input image
is increased by adding p columns and p rows to it, making the output image bigger too. For instance
padding p=1 increases the size of the input image from (ninput, Ninput, Ne) 10 (Minput + 2, Ninput +2,n¢). In
this project we will only work with zero-padding, in which all the values of the added columns and rows
are zero. When ’same’ padding is used, p is chosen to be such that the size of the output image and the
input image are the same. Padding also helps to better analyse the information located in the corner of
the input image, since more convolution operations reach the values in the edges.

Another parameter in a convolutional layer is the stride s. A convolution operation with a stride
not equal to one does not apply the filter on all possible sub-matrices in the input image, moving over
the images in steps of s instead. This reduces the size of the the output image by a factor of s. After
applying a stride s and a padding p, the width and height of the output image, noutput, will be given by:

Ninput + 2p - f +
S

1. (7)

Noutput =

10

SEEEINEREEN

Filter 3x3x3 Axdx1

——— | || /Dutpmlxdxz
® |- -t -

Filter3x3x3 Axdx1

Originalimage 6 x6 x 3

|

Original image 6 x6x 3

Figure 7: A convolutional layer where two filtres are applied to a 6 x 6 x 3 input image. Each of the filters is
individually applied to the input image generating two 4 x 4 x 1 different feature maps. These two feauture maps
are then stacked up to make a final 4 x 4 x 2 output image.

3.5.2 Pooling layers

Convolutional networks often apply pooling layers in-between convolutional layers. The most common
type of pooling, and the one used in this project, is maz-pooling. Max-pooling divides the input image
into a set of nzn non-overlapping sub-regions and, for each such sub-region, outputs the maximum. There
are other pooling techniques such as average-pooling, median-pooling or min-pooling, where instead of
taking the maximum of each subregion we take the average, the median or the minimum, respectively.
When using a nan pooling, the size of the input image will be reduced by a factor of 2n, hence reducing
the amount of parameters and computation in the network.

3.5.3 Batch normalization

Another technique widely used in deep learning is batch normalization, first proposed in [21]. It is shown
to increase the speed and the stability of the learning process and leads to a better overall convergence.
Moreover, it can even work as a normalization technique, helping to reduce overfitting. The reasons
behind its effectiveness are still not well understood. Although it was thought to be because it reduces
the internal covariant shift in the networks, later studies like [22| have contradicted this belief, while still
not giving a definite answer.

Batch normalization works by normalizing all net activation values in a layer, substracting the
mean j and dividing by the square of the standard deviation o2. For a convolutional neural network, we
would need to do this for every mini-batch of samples b, in every channel of the sample ¢ and for all the
pixels in the channel. The net activation after batch normalization would be:

Z J—
znorm _ ~bezy He Vb, c, ’i,j (8)

bexy Vo2 —e ’

where 2. ; ; is the net activation of a pixel located in the (4, j) position in the channel ¢ of a sample from
the mini-batch b. Through this process, the distribution of 2™°"™ is set to have y = 0 and ¢? = 1. This
normalization can lead to a decrease in the ’expressive power’ of the network [23], limiting the learning
process. To avoid this, it is common to add two learnable parameters «, 5 which allow the network to
scale the parameters of the distribution in the following way:

11

yb,CJJ,y — ’YC Zgizj;fby + ,Bc, (9)

where now the mean 7. and the standard deviation . of the distribution can be learn by the network
through the training process.

3.6 Residual networks

Very deep neural networks, with many layers of neu-

rons and thus many internal parameters, are proven to *
perform really well, being able to learn very complex

features from data. Nevertheless, one cannot endlessly Layer -2
stack more layers in a network in order to make it more *
accurate. At some point, if too many layers are added,

accuracy reaches a maximum and then it may start de- Layer -1

creasing. This ’depth problem’ can be solved through *
the use of residual networks (ResNets), first proposed
by Hel et al. [20], which implement the so-called skip
connections. With the use of these skip connections, the +

output of a layer is not only used as the input for the

next one, but it will also be the input of some other Figure 8: Scheme where the flow of information in
layer which is deeper in the network, as it was taking a residual network is shown. Black arrows repre-
a shortcut (see figure 8). One reason behind the effec- sent the standard way information flows, from one
tiveness of this skip connections is that they allow the 1aver to the next one; the black arrow shows the way
network to easily learn the identity function, as in very ,Sklp connections connect to non-consecutives layers
deep neural networks this identity function can be some- in the network.

times difficult to learn due to the very large number of

parameters. ResNets allow the information to skip certain layers which might be not needed improving
the flexibility of the network. The CNN used in this project incorporates the use of skip connections

Layer |

3.7 Overfitting and underfitting

When training a NN, it is common to not use all the data available to train the network. Instead, a small
fraction is used to have an unbiased estimate of the performance of the network in data the network has
never seen. Thus, the available data is splitted into two sets; a training set containing the data in which we
train the network and a test set used to measure performance. The test set must be a good representation
of the data set as whole, so it must be large enough to yield statistically meaningful results, while keeping
in mind that we should train the network with as much data as possible for optimal performance.

In the training process of a neural network the goal is to learn the mathematical mapping between
the input values and the desired outputs. This mapping can be really complex, specially in deep neural
networks, and in general we cannot have an insight on the operations the neural network computes; it is
a so-called black box model. Generalizing this mapping from the training set to the test set is not always
easy. Sometimes the network might perform very well on the training set but has a much big error in the
test set; this is called owverfitting. Overfitting is usually due to two main reasons: the first one is that the
data used in the training set is not enough or it does not have enough quality, and the second one is that
the model we built is too complex for the given problem. In both cases, the network tends to memorize
the data instead of learning it, meaning that is not able to generalize performance to data it has never
seen. Techniques that help the network to overcome overfitting and to generalize better are known as

12

Underfitted Good Fit/Robust Overfitted

Figure 9: Schematic representation of an underfitted model, a well fitted model and a overfitted model.

regularization techniques. There are many regularization techniques one can apply to the network such
as L1 and L2 regularizations, data agumentation, early stopping or dropout [11].

It could also be the case where the network is not able to perform well in any of the sets, neither
the training nor the test set. This is called underfitting, and it is normally caused by a network that is not
big and deep enough, i.e., it does not have enough parameters to learn the underlying mapping between
the input data and the output. Identifying which problem does our network present is very important in
order to try to solve it with the proper techniques.

3.8 Programming frameworks

The convolutional neural networks used in this project are deep networks with around 5 million param-
eters. Building a NN with these characteristics from scratch is not feasible. Luckily, there are many
programming frameworks for machine and deep learning which facilitate the design and development of
deep learning models, such as Caffe from UC Berkeley, CNTK from Microsoft, TensorFlow from Google,
Torch and many other tools like Theano. In this project we are using Keras, a deep learning API written
in Python, running on top of TensorFlow. Although Keras stands out for its easy and fast implementation,
it is worth mention that other frameworks such as Caffe or PyTorch tend to be faster [14].

About the used hardware, we run the scripts in a 48 multi-core CPU machine. In general, the
performance of the previous mentioned frameworks, including Keras, is much better on GPU systems than
on many-cores CPU machines. Therefore, the time used by the network to analyze the images could be
potentially improved by using other deep learning frameworks and by running them on a GPU machine.

4 Network design

The main goal of this project is to test the limits of the applications of the CNN designed in the master
thesis [1] in events with high interaction rates conditions. Although two different algorithms were designed
(noise reduction and track recognition), they are both based on the same CNN architecture, with slight
changes in each of them. In this section we will summarize the insights of the network design that were
previously obtained.

4.1 Input processing and labeling

The data we receive from the tracking software are the X and Y coordinates of the points of the wire where
a particle is measured. For the tilted wires, the coordinates in the XY plane are taken as the average of
the coordinates corresponding to the two ends of each wire. The raw data need to be shaped in a specific
way to be used as input for the network, in a process called binning. In the binning process the values
of the X and Y coordinates of a event are stored in a 2D image with a pixel resolution of 192x192. This

13

¥ 0 vin ©
25

50

75

100
125

150

175

0 50 100 150 X% 0 50 100 150 X(p¥)

Figure 10: Left: a typical input image showing four tracks and noise hits. Right: desired output of the noise
reduction algorithm demonstrating the succesful removal of noise hits.

resolution is big enough so that a single pixel does not need to store more than one measured hit in a
wire. At the same time, 192 is a power of two, which is very convenient when applying 2x2 Max-Pooling
as we do. Hence, an input image of the network will be a 192x192 image where all pixels storing a hit
have value 1 and the rest have value 0.

Since we are dealing with supervised learning algorithms, each pixel in the input image must
have a corresponding label, where the ground truth of the pixel is stored. It is only this way that the
network can learn, by comparing its prediction for each pixel with the corresponding label. For each of the
algorithms (noise reduction and track recognition) the labels will be different, since the desired outputs
in each case are different. In figures 10 and 11 a visualization of the desired output for each algorithm is
shown.

In the noise reduction algorithm, every pixel in the input image with an input value z;; = 1 can
have two different labels, denoted as y;;: if a pixel is labeled as noise the label will have a value y;; = 0,
and if it is a track point the label will be y;; = 1. However, in the track recognition algorithm we want
the network to separate the different tracks in the image, so we need to label each track in a different
way. Thus, in the track recognition algorithm the label for the noise point will still be y;; = 0, but the
track points will be labeled according to the particle track they belong to. For that, we assign a numeric
value to each particle track, namely y;; = 1,2,3,4 for 7,77, e™, e respectively.

4.2 Output processing

Since we are using a sigmoid activation function in the output layer, the output of the network is an
image with values between 0 and 1. This value corresponds to the ’confidence score’ or probability of that
specific point to be part of one of the particle tracks. The closer the value is to 0, the more likely is to be
a noise point, and the closer to 1, the more likely to be a track point. In order to classify the points we
need to apply a threshold, so that we only consider as track points pixels that have a value above that
threshold. The threshold choice is quite important as it needs to be small enough to not misclassify too
many noise points as track points but large enough so that we do not disregard too many track points. In
the track recognition algorithm we have 4 output images, one for each particle track. Each of the images
has pixels with values between 0 and 1 representing the confidence score of that pixel to be part of the
track corresponding to that specific output image.

We do not care what will the network predict for the pixels that are not part of the original
image, as we only want to classify these pixels as either noise or tracks. Thus, we remove from the output
images all the points with value 0 in the input image leaving only the points representing a measured hit.

14

Y 0

25 A
50

75 1

100 A

125 A

0 50 100 150 X(pX)

Figure 11: Left: typical input image showing four tracks and noise hits. Right: desired output of the track
recognition algorithm demonstrating the successful identification of each of the particle tracks.

4.3 Loss functions

The loss function chosen for the noise reduction algorithm was the quadratic expression:

Dijn i — Tijyij)?

Zij,n Lij ,

J(y,9) = (10)

where §;; is the pixel’s true label, y;; is the pixel’s prediction and z;; is the pixel’s input value. The sums
in 4,7 are taken over all the pixels in the input image and the sums in n are taken over all the images
in the minibatch. By multiplying y;; by x;; we are not taking in account all the points not part of the
original image, which have a value z;; = 0.

For the track recognition algorithm a different loss function is used, directly based on the defi-
nition of the performance metric F1 score:

Zij,n 20i;Y; j

J(y,@) =1- ~ N = s
> iin 2035955 + 9 (1= yiy) + (L= 9i5)yi;)

(11)

where ygj = 2;jy;; is the part of the predicted image that is also part of the original image.

4.4 Performance metrics

A neural network learns by minimizing the loss function, in this case the quadratic function shown in
equation 10. We can consider this expression as a good indicator of how well the network is learning, but
it is not a good indicator of how well the network performs overall. For instance, it does not take into
account the chosen threshold. To properly measure the performance of the network we will use a different
metric depending on which one of the two algorithms we are studying. All of the metrics we use are a
function of the chosen threshold, and they can be maximized by searching for the optimal threshold in
each case. We will always search for the optimal threshold through all the values in between 0 and 1 in
steps of 0.01. This maximal value of the metric will be the value we assign to that metric.

15

The performance metric used in the noise reduction algorithm will be the so-called simple accu-

racy, defined as:
number of correctly predicted data points

(12)

accuracy =
Y total number of points

For the track recognition algorithm the classification accuracy is not a good performance metric, since
when there are 4 tracks each one corresponds to around 16% of the data points, and thus a 84% accuracy
could be reached just by predicting that every point is not part of the track. A better way to measure
the performance with a single value metric would be to use the definition of the F1 score:

precision - recall 2 - true positives
F1 score =

= 13
precision + recall 2 - true positive + false positive + false negative ’ (13)

where the precision is the proportion of points predicted as track points that is actually correct and the
recall is the proportion of points labeled as track points that is identified correctly, which can also be
expressed as:

true positives true positives

precision = ; recall =) (14)

true positives + false positives true positives + false negative

The reason we use the F1 rather than both the precision and the recall is because it is usually more reliable
to use a single-valued metric. If we were to use both precision and recall as metrics, there could be a case
where one of them scores well and the other does not, making it difficult to evaluate performance. The
F1 score, defined as an harmonic mean of the precision and the recall, is a good metric as long as both of
them are equally important.

4.5 U-net architecture

In the master thesis 1], a search for an optimal neural network architecture for particle tracking in the
BESIII main drift chamber is done. Two main fully convolutional network architectures were considered:
a 'standard’ CNN where the size of the images is conserved along the whole network, and a model inspired
in the U-Net CNN, first proposed by Ronneberger et al [10]. U-Net consists of a contracting path where
the size of the images is reduced and an expanding path where they are brought to their original size.
We must note that it is neccesary for us that the output image keeps the same size as the input image.
After comparing both architectures, U-Net was chosen as it outperformed the standar CNN. This was not
surprising, as U-Net is the most prominent deep network in medical image segmentation and the most
popular architecture in the field [17, 18], and it has been shown to perform very well even with a scarce
amount of labeled training data [19].

There are two basic blocks of layers in U-net: convolutional blocks and up-sampling blocks. Each
convolutional block consists of a convolutional layer, using a 5x5 convolution, ’same’ padding and a s=1
stride, followed by a ReLu layer and a batch normalization layer. Up-sampling blocks consist of two layers:
a first layer where 2x2 up-sampling operation is carried out, where every value in the image is repeated
to a 2x2 grid, followed by a second layer with a 2x2 convolution also with 'same’ padding and s=1 stride.

The number of filters in the convolutional blocks doubles after every max-pool layer and halves
after every up-sampling block. This way, only the number of filters in the first convolutional block needs
to be chosen. After a detailed hyperparameter search done in [1], a number of 24 filters in the first

16

124 24+24 24 1

Input Output)
Image > | | segmentation
map
o
N
=
el
ol
N
-
¥ s vy |
0
=
E3
&
¥ 9 96+96 4 # Conv 3x3 + ReLU + Batch norm
§ H’H D’D Copy feature map
K
' 192 1924192 ¥ Max pool 2x2
&
ﬁ D .I:l D’ D 4 Upsampling + Conv 2x2
s miimndn o Conv i
&
—

Figure 12: Adapted U-Net architecture for the noise reduction algorithm. For the track recognition algorithm, the
only difference is that the last convolutional layer has 4 filters instead of 1, so that the network ouputs 4 feature
maps, one for each track.

convolutional block and a 5x5 filter size for the convolutional layer in each convolutional block is chosen.

The overall architecture of the network (figure 12) is as follows:

1. A contracting path made up by four convolutional blocks that are each followed by a 2x2 max-pooling
layer.

2. A expanding path consisting of four convolutional blocks that are each followed by up-sampling
blocks.

3. One final convolutional block more followed by an output layer with one 1x1 filter.

In the layer in-between the contracting and the expanding path, images will have a small image
size: the 192x192 input image is reduced to a 12x12 image with 192 channels. Therefore, a large number
of filters can be applied without a huge computational cost.

5 Testing the model

In the master thesis [1], the network was tested with ¥(2S) — 27J/¥ — 2u27 Monte Carlo simulated
events from electron-positron anhilitations in BESIII. These were events with a low background noise
level and only four particle tracks. In such conditions, the network was proven to perform with a very
high efficiency. Specifically, when each algorithm was applied independently to the raw data, the noise
reduction algorithm achieved a maximum accuracy of 97.5% while the track recognition algorithm scored
a 96.0% F1 score when trained with 60.000 images. The performance was even higher when the noise
reduction algorithm was applied first and the track recognition algorithm after.

Nevertheless, in the experiments which will be carried out in PANDA both the noise and the
number of tracks per event will be much higher. In this section the algorithms will be tested on events

17

Ypx) O Y(ex) ©

150 X(px) 0 50 100 150 XX

50 100 150 X(x) 0 50 100 150 X9

Figure 13: The same event with different noise ratios. From left to right and from the top to bottom, the noise
ratios are 1:1, 1:2, 1:4 and 1:8.

with variable conditions to try to establish the limits of its applications. In this project we used ¥(2S) —
J/U ntn~ — e etrtrT events to train and test the CNN. The track points were generated through
Monte Carlo simulations while the noise points are taken from real data that were triggered on random
time signatures, not related to the electron-positron interaction point.

5.1 Testing on different background noise levels

To study the dependence of the performance of the network with the level of noise in the events, we
generated 4 data sets with different background noise levels. These data sets all have the same track
signal points but a different background noise level. We did so by taking each specific event and adding to
it the noise points from other random events. Depending on how many ’noise events’ we add to the events
in each of the data sets we end up with data sets with different noise levels. Specifically we produced 4
different data sets with signal to noise event ratios 1:1, 1:2, 1:4 and 1:8 (see figure 13). This means that,
for example, in the 1:4 data set the track points of each event are mixed with the noise points from 4
different random events. The 1:1 data have the same noise level as the data used in the master thesis.
From now on we will refer to this feature as the 'noise ratio’ of the data set.

Noise reduction

We trained the noise reduction algorithm in each of the 4 data sets for 20 epochs. The training was
done in a training set of 10.000 images and a test set of 1.000 images, with both sets having the same
noise ratio. The results of the training are shown in figure 14. The left panel compares the loss function
measured in the training set (training loss) by epoch for each of the data sets. The CNN achieves a
smaller training loss in the data sets with less noise after 20 epochs. In the right panel the accuracies
by epoch of each data set are shown for both the test and the training set. The real performance of the
network is measured by the test accuracy, as the test set is made up by data that the network has never
seen before, just like the data generated in the experiments where this network could be used. The CNN
scores a higher accuracy in the data sets with less noise, reaching a maximum test accuracy of 97.1% for
the 1:1 noise ratio data set. For the data set with a 1:8 noise ratio, the maximum test accuracy is still

18

Noise ratio 1:1 Noise ratio 1:2

0.99 4 0.99 4
0.98 4 0.98
o)
© 0.97 0.97 4
—— Noise ratio 1:1 2
. . o]
—— Noise ratio 1:2 < 0.96 - 0.96 1
—— Noise ratio 1:4
—— Noise ratio 1:8 —— Train accuracy /\//\/\
0.9579 — Test accuracy 0.95 1
@ 10-3 r r - r : :
o 5 10 15 5 10 15
= Epochs Epochs
c
© Noise ratio 1:4 Noise ratio 1:8
= 0.99 A 0.99
1044 0.98 0.98
o
© 0.97 0.97 4 /\/\/\/\
=3
00 25 50 75 100 125 150 175 200 < g6 0.96 -
Epochs
0.95 A /\/\/\—/\M 0.95 1 /_/—\/\/\——
5 10 15 5 10 15
Epochs Epochs
(a) Training loss by epoch (b) Accuracy by epoch

Figure 14: Performance of the noise reduction algorithm in the 4 different data sets with signal to noise points
ratios of 1:1, 1:2, 1:4 and 1:8.

95.2%, demonstrating that the performance only drops slightly in the case the noise level increases. The
maximum test accuracy for each data set is shown in table 1.

Track recognition

For the track recognition algorithm we trained the model for 40 epochs, as the learning process turned out
to be slower than for the noise reduction algorithm. The results are shown in figure 15 and the maximum
test F1 scores for each data set are summarized in table 1. In this case the test F1 scores decreases more
significantly with increasing noise compared to the noise reduction algorithm. This demonstrates that the
track recognition algorithm is more sensitive to the level of noise in the data.

Noise ratio 1:1 | Noise ratio 1:2 | Noise ratio 1:4 | Noise ratio 1:8

97.1 95.7 95.5 95.2

Noise reduction
maximum test accuracy (%)

Track recognition

maximum test F1 score (%) IL5 910 87.2 83.4

Table 1: Maximum values of the noise reduction algorithm accuracy and the track recognition F1 score achieved
in each of the datasets.

19

Noise ratio 1:1

Noise ratio 1:2

0.95 W 0.95 - //\/\[/J‘\/W/\
o W
0 g 5 0.90 0.90
10 . - S
—— Noise ratio 1:1 “
—— Noise ratio 1:2 w
—— Noise ratio 1:4 0.85 0.851
—— Noise ratio 1:8 —— Train F1 score —— Train F1 score
—— Test F1 score —— Test F1 score
@ 080 L T T T T 080 1 T T T T T
§ 0 10 30 40 0 10 20 30 40
= Epochs Epochs
c
2 1071 Noise ratio 1:4 Noise ratio 1:8
—— Train F1 score —— Train F1 score
0951 —— Test F1 score 0.95 1 —— Test F1 score
g 0.90 4 0.90 A
9]
&
T — W
0 5 10 15 20 25 w W
Epochs 0.85 1 0.85
W e
0.80 A 1 0.80

10 20 30 40 0 10 20 30 40
Epochs

o

Epochs

(a) Training loss for the first 25 epochs (b) F1 score by epochs

Figure 15: Performance of the track recognition algorithm in the 4 different data sets with signal to noise ratios
1:1,1:2,1:4 and 1:8.

Noise reduction accuracy (%) Track recognition F1 score (%)
Applied to | Applied to Applied to | Applied to
noise 1:1 noise 1:8 noise 1:1 noise 1:8
Tran.led with 97 1 4.2 Tran'led with 015 68.9
noise 1:1 noise 1:1
Tralr.led with 94.9 05.2 Tralr'led with 84.9 83.4
noise 1:8 noise 1:8

Table 2: Performance of both algorithms when we train the network with events with a low
noise/signal ratio 1:1 and then apply them to events with a higher noise/signal ratio 1:8,
and viceversa.

Variable noise ratios

In PANDA, the generated events in experiments will likely have a variable noise. Thus, it is interesting to
study if the network, when trained with events with low noise, can still perform well in other noisier events
(and viceversa). With that goal in mind, we took the network trained in the previous section with the 1:1
data set and applied it to the 1:8 data set. Subsequently, we analyzed the opposite strategy by taking the
network trained with the 1:8 data set and applying it to the 1:1 data set. This way we can measure how
does the network perform when it is asked to filter noise and recognize tracks in data with a different level
of noise than the data in which the network was trained with. The results for both algorithms are shown
in table 2, where the corresponding performance metrics for each algorithm are shown in each case.

In both algorithms the network seems to perform better when the events used to train the
network and the events in which the network is applied have the same noise ratio. When the network
is trained with low noise events 1:1 (first row in the table), the performance is good when it is applied
to the same noise ratio but it drops when applied to a higher noise ratio 1:8. This drop is particularly
noticeable in the track recognition algorithm, where the F1 score goes from 91.5% to a 68.9%, decreasing
more than 20%.

20

On the other hand, when the noise reduction algorithm is trained with high noise ratio 1:8 events,
the performance in low noise events is only slightly worse than when trained with low noise (from 97.1%
to 94.9%) while also performing good in high noise ratio. This suggests that for the noise reduction
algorithm, training the network with noisy events helps the network to have a better overall performance
along the different noise levels. Training the track recognition algorithm with noisy 1:8 events instead of
with low noise 1:1 events yields a drop in the performance when applying to low noise events (from 91.5%
to 84.2%) but greatly improves performance in noisy events (from 68.9% to 83.4%).

In conclusion, these results suggest that if a fixed noise level is expected for the events in the
experiment, then the network should be trained with events with a similar noise level, since we have seen
that this yields the best results. On the other hand, if the events with variable noise are expected, then
training with noisy events is the most efficient method to have a good overall performance.

5.2 Adding random tracks

In PANDA, the data rates will be so high that events are likely
to overlap, resulting in images with many tracks. Consequently,
it is interesting to know if our network is able to filter tracks
that are not part of the studied event. To do so, we produced a
new data set by taking the previous 1:1 noise ratio data set and
adding to each event a new random track from another event. 75
This new random track is taken from another random event and

Y (px)°

100
can correspond to any of the 4 particles e”,et, 7t 7~ (figure

16). We would like to see if the network is able to recognize this 125
fake track as noise to remove it from the image. 150

We want the network to classify the new random track 175
as noise. Thus, both the background noise and the random track
should be labeled equally. We first trained the model with a
training data set of 10.000 images and a test set of 1.000 images Figure 16: Visualization of a 1:1 noise ratio
for 20 epochs. For the noise reduction algorithm, the network event with a fake track added (in cyan). In
achieves a test accuracy with a maximum of 83.2%, and for the this case the added track corresponds to a
track recognition algorithm a F1 score with a maximum of 80.8%. 7" particle.
Both cases yield worse results than when no fake track is added.
It is clear that it difficult for the model to filter a proper track
randomly added to the event than the background noise. The network seems to learn well the training
set, as both the train accuracy for the noise reduction and the train F1 score for the track recognition
algorithm are high, but it is clearly not able to generalize to the test set; the network is overfitting the
data. Therefore, as a next step we trained the CNN with a larger training set, as this is usually a good
strategy to avoid overfitting.

0 50 100 150 X (px)

We trained again the model with the same data set but now with a training set of 60.000 images
for the noise reduction algorithm and with 25.000 images for the track recognition (it was not possible
to train the latter with more images due to memory limitations). We reached a maximum accuracy
of 87.0%for the noise reduction algorithm and a 84.1% F1 score in the track recognition algorithm.
The comparison between the training with 10.000 and with 60.000 images is shown in figure 17 for the
noise reduction algorithm and in figure 18 for the track recognition. By using a larger training set the
performance was improved. However, after visualization (see figure 19), we observe that the algorithm
primarily filters the random noise hit but not the added track.

21

Training set 10.000 images

| Train accuracy
09757 Test accuracy
0.950 4
0.925 4
>
5 0.900
3
3
t 0.875
0.850 4
—— Training set with 10.000 images 0.825
—— Training set with 60.000 images ’
0.800 - . . . " r - "
25 50 7.5 100 125 15.0 17.5
Epochs
g Training set 60.000 images
S,] Train accuracy
% 09751 Test accuracy
E 0.950 4
0.925 4
0.900 4
0.875 |
0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0 0.850 4
Epochs
0.825 4
0.800 -
0 5 10 15 20 25
Epochs
(a) Training loss by epoch (b) Accuracy by epoch

Figure 17: Comparison of the noise reduction algorithm when trained with 10.000 and 60.000 events with an added
track and a noise ratio 1:1. Test set in both cases comprises 1.000 images.

Training set 10.000 images

0.92
Train accuracy
0904 — Test accuracy
0.88
0.86
<3
S 0.84 4
—
b
0.82
0.80
—— Training set with 10.000 images 0.78 1
—— Training set with 25.000 images
0.76
5 10 15 20 25
Epochs
A Training set 25.000 images
° 0.92 -
o ——— Train accuracy
E 0.90 4 — Test accuracy
G
= 0.88
0.86
L
S 0.84 4 W
—
i
0.82
0.80
Epochs 0.75
0.76
25 50 7.5 100 125 15.0 17.5 20.0 22.5
Epochs
(a) Training loss by epoch (b) F1 score by epoch in both the training with 10.000

and 60.000 images

Figure 18: Comparison of the track recognition algorithm when trained with 10.000 and 25.000 images with an
added track and a noise ratio 1:1. Test set in both cases comprises cases comprises 1.000. images

22

Y (px) 0 Y (px) 0

25
50 50

75

100) 100
125 I::
150 150
175 ' _
0 50 100 150 X (@ 0 50 100 150 X(¥)

Figure 19: Left: input of the network showing the added track in blue. Right: the output of the network demon-
strating how the CNN is not able to filter the added track, while still filtering the noise.

k..

Figure 20: Left: input image of the network consisting of an incomplete event where the hits measured with the
tilted wires have been erased. Right: output images of the CNN where the tracks are not properly identified,
demonstrating the incapability of the network to recognize the different tracks in incomplete events. The different
particle tracks are marked inside red ellipses.

¥ (p°

0 50 100 150 X (px)

It is not surprising that the network has more difficulties to filter these fake added random tracks
than in the case of the background noise. The patterns of these tracks have very similar features than the
ones of the event itself. In order to distinguish them, the CNN has to be able to measure the momentum of
the different particles to see which one does not add up to the initial momentum. This means the network
has to learn about momentum conservation from the images. Extracting these high-level features, related
with the relative orientation of the different tracks, is not easy to learn for the CNN. On the other hand,
filtering the background noise involves learning low-level, local features related to connectivity between
the points, for which the CNN works nicely.

5.3 Testing on incomplete events

In this final section we studied the performance of the track recognition algorithm in incomplete events.
The goal is to see if the algorithm is still able to identify the different particle tracks in events where some

23

sections of the tracks are missing. We will assume that the tilted wires of the MDC are not working, so
the input images of the network will only be composed of the hits measured with the axial wires.

To train the CNN we used 10.000 complete events with a 1:1 noise ratio. Applying the algorithm
to a test set of 5.000 incomplete events yielded a F1 score of 45.9%. A visualization of one of the predicted
images by the CNN can be seen in figure 20. The algorithm tested in the same data set but with the
events showing all the points from the tilted and the axial wires scored a F1 score of 92.5%. This shows
that the algorithm is in general not able to identify individual tracks in events where the hits measured
by the tilted wires are not available. This demonstrates again that the network works nice with local
features, but it breaks down when it is asked to extrapolate more global features, such as connecting
different sections of the incomplete tracks.

6 Conclusions

In this research project the application limits of a convolutional neural network for the analysis of tracking
data in detectors such as PANDA or BESIII were studied. The CNN was tested with Monte Carlo
simulated data from the decay channel ¥(2S) — J/¥ ntn~ — e etntn~ in the BESIII experiment,
and the noise was taken from real data in the same detector. We have studied the applications of the CNN
using two algorithms: noise reduction and track recognition. These algorithms were already studied in [1],
achieving good performance scores in relatively clean events. In this project we tested their performance
in events with more extreme conditions such as those expected in modern experiments like PANDA or
those in CERN, where the high event rates causes overlapping between events.

Firstly, we studied the dependence of the network’s performance on the background noise levels
of the events. The noise reduction algorithm showed great accuracy even when it was applied to very
noisy events (over 95% of accuracy), while the performance of the track recognition algorithm did not
scale as good when the noise level for each event was increased. We also demonstrated the importance of
the noise level of the events used to train the CNN, as using low noise events in the training set was shown
to decrease the performance when the CNN was applied to noisier events. Then, the number of tracks in
the events was increased from 4 to 5 by adding a fake track, and the network was trained to filter this
added track. To do so, the network should be able to extract high-level features from the images, such as
learning the momentum conservation law, to distinguish the fake track from the real tracks. The network
was unable to filter this added track efficiently. Finally, we applied the track recognition algorithm to
incomplete events were the hits measured by the tilted wires had been erased. In order to be able to
identify the tracks, the network should extrapolate the missing points of the tracks, using information
from all the tracks. The CNN was not able to recognize the incomplete tracks, demonstrating again its
incapability to work with high-level, global features built with information from all the tracks.

In conclusion, the CNN studied in this project was shown to be a potential candidate as a noise
reduction algorithm given its good performance filtering background noise even in very noisy events. It
could also be used as track recognition algorithm to segment the different particle tracks in events with
low noise, or in events where the background noise has been reduced by the noise reduction algorithm.
Nevertheless, since the CNN is not able to filter added tracks not part of the event, it could not be
used in events such as those expected in PANDA or other modern experiments, where the events will
likely overlap generating images with many particle tracks. Nonetheless, this doesn’t mean the CNN
methodology cannot be applied on such events, since this network could be improved with a more careful
tuning of its hyperparameters or by taking in consideration other CNN architectures apart from U-Net.

24

References

(1]
2]

13l
4]
15]

[6]
7]
18]

19]
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]
[20]
[21]
[22]
23]

[24]
[25]

H de Vries. Convolutional Neural Network for Reducing Noise and Detecting Tracks in the BES-IIT
Main Drift Chamber. 2019.

PANDA collaboration. Physics Performance Report for PANDA: Strong Interaction Studies with
Antiprotons. 2009

A Herten. GPU-based online tracking for the PANDA FEzperiment. 2015.
K Albertsson et al. Machine Learning in High Energy Physics Community White Paper. 2018.

P Dalpiaz. Charmonium and other onia at minimum energy. Physics With Cooled Low Energetic
Antiprotons, edited by H. Poth, pages 111-124. 1979.

PANDA collaboration. Technical Design Report for the PANDA Forward Tracker. 2017.
BESIII collaboration. Physics at BES-II1. 2008.

C Chen et al. The BES-III drift chamber. 2007 Nuclear Science Symposium Conference Record,
3:1844-1846. 2007.

K O’Shea, R Nash. An Introduction to Convolutional Neural Networks. 2015.

O Ronneberger, P Fischer, T Brox. U-Net: Convolutional Networks for Biomedical Image Segmen-
tation. 2015

R Krishna, D Shu, F Li. Notes on the course CS231n: Convolutional Neural Networks for Visual
Recognition. Standford University, Spring 2020.

Y LeCun, Y Bengio, G Hinton. Deep learning. Nature. 2015.

X Glorot, A Bordes, Y Bengio. Deep sparse rectifier neural networks. 2011.

S Shi, Q Wang, P Xu, X Chu. Benchmarking state-of-the-art deep learning software tools. 2016.
Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016.

N Qian. On the momentum term in gradient descent learning algorithms. 1999.

M Drozdzal, E Vorontsov, G Chartrand, S Kadoury, C Pal. The importance of skip connections in
biomedical image segmentation in Deep Learning and Data Labeling for Medical Applications. 2016

N Ibtehaz, M S Rahman. MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomed-
ical Image Segmentation. 2019

G Litjens, T Kooi, B E Bejnordi, A Setio, F Ciompi, M Ghafoorian, J A Van Der Laak, E Van
Ginneken, Clara I Sanchez. A survey on deep learning in medical image analysis. Medical image
analysis. 2017.

He et al. Deep residual networks for image recognition. 2015

S IToffe, C Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. 2015

S Santurkar, D Tsipras, A Ilyas and A Madry. How Does Batch Normalization Help Optimization?.
2018

I Goodfellow, Y Bengio, A Courville Deep Learning, section 8.7.1. MIT Press. 2016.
http://www.deeplearningbook.org

D P Diederik, J Ba. ADAM: a method for stochastic optimization. 2016.

A Krizhevsky, I Sutskever, G Hinton. ImageNet classification with deep convolutional neural networks.
In Proc. Advances in Neural Information Processing Systems 25 1090-1098. 2012.

25

